Don't miss any moment of global AI innovation
Daily three-minute AI industry trends
AI industry milestones
AI monetization case sharing
AI image creation monetization cases
AI video creation monetization cases
AI audio creation monetization cases
AI content writing monetization cases
Free sharing of the latest AI tutorials
Shows total visits ranking of AI websites
Track fastest growing AI websites by traffic
Focus on AI websites with significant traffic drops
Shows weekly visits ranking of AI websites
AI websites most popular with US users
AI websites most popular with Chinese users
AI websites most popular with Indian users
AI websites most popular with Brazilian users
Total visits ranking of AI image generation websites
Total visits ranking of AI personal assistant websites
Total visits ranking of AI character generation websites
Total visits ranking of AI video generation websites
GitHub popular AI projects by total stars
GitHub popular AI projects by growth rate
GitHub popular AI developer ranking
GitHub popular AI organization ranking
GitHub popular deepseek open source projects
GitHub popular TTS open source projects
GitHub popular LLM open source projects
GitHub popular ChatGPT open source projects
Overview of GitHub popular AI open source projects
ACE 2005 corpus preprocessing for Event Extraction task
The online version is temporarily unavailable because we cannot afford the key. You can clone and run it locally. Note: we set defaul openai key. If keys exceed plan and are invalid, please tell us. The response speed depends on openai. ( sometimes, the official is too crowded and slow)
中文文本分析工具包(包括- 文本分类 - 文本聚类 - 文本相似性 - 关键词抽取 - 关键短语抽取 - 情感分析 - 文本纠错 - 文本摘要 - 主题关键词-同义词、近义词-事件三元组抽取)
DoTAT 是一款基于web、面向领域的通用文本标注工具,支持大规模实体标注、关系标注、事件标注、文本分类、基于字典匹配和正则匹配的自动标注以及用于实现归一化的标准名标注,同时也支持迭代标注、嵌套实体标注和嵌套事件标注。标注规范可自定义且同类型任务中可“一次创建多次复用”。通过分级实体集合扩大了实体类型的规模,并设计了全新高效的标注方式,提升了用户体验和标注效率。此外,本工具增加了审核环节,可对多人的标注结果进行一致性检验、自动合并和手动调整,提高了标注结果的准确率。
基于法律裁判文书的事件抽取及其应用,包括数据的分词、词性标注、命名实体识别、事件要素抽取和判决结果预测等内容
A list of NLP resources focused on event extraction task
Extraction of the journalistic five W and one H questions (5W1H) from news articles: who did what, when, where, why, and how?
[WWWJ 2024] LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities
A comprehensive, unified and modular event extraction toolkit.
Pytorch Solution of Event Extraction Task using BERT on ACE 2005 corpus
[EMNLP 2020] OpenUE: An Open Toolkit of Universal Extraction from Text