Don't miss any moment of global AI innovation
Daily three-minute AI industry trends
AI industry milestones
AI monetization case sharing
AI image creation monetization cases
AI video creation monetization cases
AI audio creation monetization cases
AI content writing monetization cases
Free sharing of the latest AI tutorials
Shows total visits ranking of AI websites
Track fastest growing AI websites by traffic
Focus on AI websites with significant traffic drops
Shows weekly visits ranking of AI websites
AI websites most popular with US users
AI websites most popular with Chinese users
AI websites most popular with Indian users
AI websites most popular with Brazilian users
Total visits ranking of AI image generation websites
Total visits ranking of AI personal assistant websites
Total visits ranking of AI character generation websites
Total visits ranking of AI video generation websites
GitHub popular AI projects by total stars
GitHub popular AI projects by growth rate
GitHub popular AI developer ranking
GitHub popular AI organization ranking
GitHub popular deepseek open source projects
GitHub popular TTS open source projects
GitHub popular LLM open source projects
GitHub popular ChatGPT open source projects
Overview of GitHub popular AI open source projects
Sparse and discrete interpretability tool for neural networks
A game theoretic approach to explain the output of any machine learning model.
[NeurIPS 2022] Towards Robust Blind Face Restoration with Codebook Lookup Transformer
The Open Source Feature Store for AI/ML
? Shapash: User-friendly Explainability and Interpretability to Develop Reliable and Transparent Machine Learning Models
Algorithms for explaining machine learning models
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)
A JAX research toolkit for building, editing, and visualizing neural networks.
[ICCV 2017] Torch code for Grad-CAM
Model explainability that works seamlessly with ? transformers. Explain your transformers model in just 2 lines of code.
Interpretability Methods for tf.keras models with Tensorflow 2.x