Don't miss any moment of global AI innovation
Daily three-minute AI industry trends
AI industry milestones
Lists all AI hardware products.
AI monetization case sharing
AI image creation monetization cases
AI video creation monetization cases
AI audio creation monetization cases
AI content writing monetization cases
Free sharing of the latest AI tutorials
Shows total visits ranking of AI websites
Track fastest growing AI websites by traffic
Focus on AI websites with significant traffic drops
Shows weekly visits ranking of AI websites
AI websites most popular with US users
AI websites most popular with Chinese users
AI websites most popular with Indian users
AI websites most popular with Brazilian users
Total visits ranking of AI image generation websites
Total visits ranking of AI personal assistant websites
Total visits ranking of AI character generation websites
Total visits ranking of AI video generation websites
GitHub popular AI projects by total stars
GitHub popular AI projects by growth rate
GitHub popular AI developer ranking
GitHub popular AI organization ranking
GitHub popular deepseek open source projects
GitHub popular TTS open source projects
GitHub popular LLM open source projects
GitHub popular ChatGPT open source projects
Overview of GitHub popular AI open source projects
Transfer DeBlurGan to dehaze
[ICCV 2019] "DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better" by Orest Kupyn, Tetiana Martyniuk, Junru Wu, Zhangyang Wang
Tensorflow implementation of DeblurGAN(Blind Motion Deblurring Using Conditional Adversarial Networks)
An easy-to-read implementation of DeblurGAN
This is a lightweight GAN developed for real-time deblurring. The model has a super tiny size and a rapid inference time. The motivation is to boost marker detection in robotic applications, however, you may use it for other applications definitely.
Dataset and code of our AAAI2022 paper "Transmission-Guided Bayesian Generative Model for Smoke Segmentation"
Analytics DSL for Python
Lightweight and Efficient Image Dehazing Network Guided by Transmission Estimation from Real-world Hazy Scenes; accepted by Sensors?2021,?21(3), 960, MDPI; https://doi.org/10.3390/s21030960
This is a very simplified ipynb code for KupynOrest's Deblur GAN code. DeblurGAN addresses the challenge of end-to-end image deblurring through the use of conditional Generative Adversarial Networks (cGANs).I have used pytorch for this implementation.