Don't miss any moment of global AI innovation
Daily three-minute AI industry trends
AI industry milestones
AI monetization case sharing
AI image creation monetization cases
AI video creation monetization cases
AI audio creation monetization cases
AI content writing monetization cases
Free sharing of the latest AI tutorials
Shows total visits ranking of AI websites
Track fastest growing AI websites by traffic
Focus on AI websites with significant traffic drops
Shows weekly visits ranking of AI websites
AI websites most popular with US users
AI websites most popular with Chinese users
AI websites most popular with Indian users
AI websites most popular with Brazilian users
Total visits ranking of AI image generation websites
Total visits ranking of AI personal assistant websites
Total visits ranking of AI character generation websites
Total visits ranking of AI video generation websites
GitHub popular AI projects by total stars
GitHub popular AI projects by growth rate
GitHub popular AI developer ranking
GitHub popular AI organization ranking
GitHub popular deepseek open source projects
GitHub popular TTS open source projects
GitHub popular LLM open source projects
GitHub popular ChatGPT open source projects
Overview of GitHub popular AI open source projects
Deep learning library in plain Numpy.
MNIST classification using Convolutional NeuralNetwork. Various techniques such as data augmentation, dropout, batchnormalization, etc are implemented.
CS F425 Deep Learning course at BITS Pilani (Goa Campus)
[WACV 2022] "Sandwich Batch Normalization: A Drop-In Replacement for Feature Distribution Heterogeneity" by Xinyu Gong, Wuyang Chen, Tianlong Chen and Zhangyang Wang
Win probability predictions for League of Legends matches using neural networks
Toy implementations of some popular ML optimizers using Python/JAX
Interesting python codes to tackle simple machine/deep learning tasks
Unofficial Keras implementation of the paper Attentive Normalization.
A compressed adaptive optimizer for training large-scale deep learning models using PyTorch
Modified XGBoost implementation from scratch with Numpy using Adam and RSMProp optimizers.
The project aimed to implement Deep NN / RNN based solution in order to develop flexible methods that are able to adaptively fillin, backfill, and predict time-series using a large number of heterogeneous training datasets.