Don't miss any moment of global AI innovation
Daily three-minute AI industry trends
AI industry milestones
AI monetization case sharing
AI image creation monetization cases
AI video creation monetization cases
AI audio creation monetization cases
AI content writing monetization cases
Free sharing of the latest AI tutorials
Shows total visits ranking of AI websites
Track fastest growing AI websites by traffic
Focus on AI websites with significant traffic drops
Shows weekly visits ranking of AI websites
AI websites most popular with US users
AI websites most popular with Chinese users
AI websites most popular with Indian users
AI websites most popular with Brazilian users
Total visits ranking of AI image generation websites
Total visits ranking of AI personal assistant websites
Total visits ranking of AI character generation websites
Total visits ranking of AI video generation websites
GitHub popular AI projects by total stars
GitHub popular AI projects by growth rate
GitHub popular AI developer ranking
GitHub popular AI organization ranking
GitHub popular deepseek open source projects
GitHub popular TTS open source projects
GitHub popular LLM open source projects
GitHub popular ChatGPT open source projects
Overview of GitHub popular AI open source projects
Code and Data for NAACL 2024 paper: Fair Abstractive Summarization of Diverse Perspectives
The LLM Evaluation Framework
Python SDK for AI agent monitoring, LLM cost tracking, benchmarking, and more. Integrates with most LLMs and agent frameworks including OpenAI Agents SDK, CrewAI, Langchain, Autogen, AG2, and CamelAI
《大模型白盒子构建指南》:一个全手搓的Tiny-Universe
(IROS 2020, ECCVW 2020) Official Python Implementation for "3D Multi-Object Tracking: A Baseline and New Evaluation Metrics"
? Everything about class-imbalanced/long-tail learning: papers, codes, frameworks, and libraries | 有关类别不平衡/长尾学习的一切:论文、代码、框架与库
Sharing both practical insights and theoretical knowledge about LLM evaluation that we gathered while managing the Open LLM Leaderboard and designing lighteval!
[NeurIPS'21 Outstanding Paper] Library for reliable evaluation on RL and ML benchmarks, even with only a handful of seeds.
Evaluate your speech-to-text system with similarity measures such as word error rate (WER)
Data-Driven Evaluation for LLM-Powered Applications
PyNLPl, pronounced as 'pineapple', is a Python library for Natural Language Processing. It contains various modules useful for common, and less common, NLP tasks. PyNLPl can be used for basic tasks such as the extraction of n-grams and frequency lists, and to build simple language model. There are also more complex data types and algorithms. Moreover, there are parsers for file formats common in NLP (e.g. FoLiA/Giza/Moses/ARPA/Timbl/CQL). There are also clients to interface with various NLP specific servers. PyNLPl most notably features a very extensive library for working with FoLiA XML (Format for Linguistic Annotation).