Don't miss any moment of global AI innovation
Daily three-minute AI industry trends
AI industry milestones
AI monetization case sharing
AI image creation monetization cases
AI video creation monetization cases
AI audio creation monetization cases
AI content writing monetization cases
Free sharing of the latest AI tutorials
Shows total visits ranking of AI websites
Track fastest growing AI websites by traffic
Focus on AI websites with significant traffic drops
Shows weekly visits ranking of AI websites
AI websites most popular with US users
AI websites most popular with Chinese users
AI websites most popular with Indian users
AI websites most popular with Brazilian users
Total visits ranking of AI image generation websites
Total visits ranking of AI personal assistant websites
Total visits ranking of AI character generation websites
Total visits ranking of AI video generation websites
GitHub popular AI projects by total stars
GitHub popular AI projects by growth rate
GitHub popular AI developer ranking
GitHub popular AI organization ranking
GitHub popular deepseek open source projects
GitHub popular TTS open source projects
GitHub popular LLM open source projects
GitHub popular ChatGPT open source projects
Overview of GitHub popular AI open source projects
PyTorch implementation of some learning rate schedulers for deep learning researcher.
Recommendation Algorithm大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、Bert4Rec、DeepWalk、SSR、AITM,DSIN,SIGN,IPREC、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、ESCMM, MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、DMR、GateNet、NAML、DIFM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、Fibinet、ListWise、DeepRec、ENSFM,TiSAS,AutoFIS等,包含经典推荐系统数据集criteo 、movielens等
A learning rate range test implementation in PyTorch
Play deep learning with CIFAR datasets
Visualize Tensorflow's optimizers.
numpy 实现的 周志华《机器学习》书中的算法及其他一些传统机器学习算法
Improving MMD-GAN training with repulsive loss function
A method for assigning separate learning rate schedulers to different parameters group in a model.
Neural net solver with auto-tuned hyperparameters (Python 3.5)
This repository focuses on the Neural Networks and deep learning. It is a workbook you can refer it for a reference. I'll Include following content here: Neurons, perceptrons, weight and biases, learning rate, activation form, hyper parameters, RNN, CNN and other popular concepts.
Analyze the performance of 7 optimizers by varying their learning rates