Don't miss any moment of global AI innovation
Daily three-minute AI industry trends
AI industry milestones
AI monetization case sharing
AI image creation monetization cases
AI video creation monetization cases
AI audio creation monetization cases
AI content writing monetization cases
Free sharing of the latest AI tutorials
Shows total visits ranking of AI websites
Track fastest growing AI websites by traffic
Focus on AI websites with significant traffic drops
Shows weekly visits ranking of AI websites
AI websites most popular with US users
AI websites most popular with Chinese users
AI websites most popular with Indian users
AI websites most popular with Brazilian users
Total visits ranking of AI image generation websites
Total visits ranking of AI personal assistant websites
Total visits ranking of AI character generation websites
Total visits ranking of AI video generation websites
GitHub popular AI projects by total stars
GitHub popular AI projects by growth rate
GitHub popular AI developer ranking
GitHub popular AI organization ranking
GitHub popular deepseek open source projects
GitHub popular TTS open source projects
GitHub popular LLM open source projects
GitHub popular ChatGPT open source projects
Overview of GitHub popular AI open source projects
Course project for machine learning(cmu 10701, phd)
NCRF++, a Neural Sequence Labeling Toolkit. Easy use to any sequence labeling tasks (e.g. NER, POS, Segmentation). It includes character LSTM/CNN, word LSTM/CNN and softmax/CRF components.
Named-Entity-Recognition-with-Bidirectional-LSTM-CNNs
Spanish word embeddings computed with different methods and from different corpora
Using pre trained word embeddings (Fasttext, Word2Vec)
Taking a pretrained GloVe model, and using it as a TensorFlow embedding weight layer **inside the GPU**. Therefore, you only need to send the index of the words through the GPU data transfer bus, reducing data transfer overhead.
A monolingual and cross-lingual meta-embedding generation and evaluation framework
GloVe word vector embedding experiments (similar to Word2Vec)
This sentiment analysis project determines whether the tweets posted in the Turkish language on Twitter are positive or negative.
It's Smart-Question Answering System on short as well as long documents. It can automatically find answers to matching questions directly from documents. The deep learning language model converts the questions and documents to semantic vectors to find the matching answer.
An evaluation of word-embeddings for classification