Don't miss any moment of global AI innovation
Daily three-minute AI industry trends
AI industry milestones
Lists all AI hardware products.
AI monetization case sharing
AI image creation monetization cases
AI video creation monetization cases
AI audio creation monetization cases
AI content writing monetization cases
Free sharing of the latest AI tutorials
Shows total visits ranking of AI websites
Track fastest growing AI websites by traffic
Focus on AI websites with significant traffic drops
Shows weekly visits ranking of AI websites
AI websites most popular with US users
AI websites most popular with Chinese users
AI websites most popular with Indian users
AI websites most popular with Brazilian users
Total visits ranking of AI image generation websites
Total visits ranking of AI personal assistant websites
Total visits ranking of AI character generation websites
Total visits ranking of AI video generation websites
GitHub popular AI projects by total stars
GitHub popular AI projects by growth rate
GitHub popular AI developer ranking
GitHub popular AI organization ranking
GitHub popular deepseek open source projects
GitHub popular TTS open source projects
GitHub popular LLM open source projects
GitHub popular ChatGPT open source projects
Overview of GitHub popular AI open source projects
SGX XGBoost based on Google Asylo.
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
A python library for decision tree visualization and model interpretation.
Transform ML models into a native code (Java, C, Python, Go, JavaScript, Visual Basic, C#, R, PowerShell, PHP, Dart, Haskell, Ruby, F#, Rust) with zero dependencies
A library for debugging/inspecting machine learning classifiers and explaining their predictions
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.
A minimal benchmark for scalability, speed and accuracy of commonly used open source implementations (R packages, Python scikit-learn, H2O, xgboost, Spark MLlib etc.) of the top machine learning algorithms for binary classification (random forests, gradient boosted trees, deep neural networks etc.).
Provide an input CSV and a target field to predict, generate a model + code to run it.
Automatically Visualize any dataset, any size with a single line of code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.
Distributed ML Training and Fine-Tuning on Kubernetes
Fidelius - YeeZ Privacy Computing 基于可信执行环境的熠智隐私计算中间件