Thanks to digitization, we often have access to large databases, consisting of various fields of information, ranging from numbers to texts and even boolean values. Such databases lend themselves especially well to machine learning, classification and big data analysis tasks. We are able to train classifiers, using already existing data and use them for predicting the values of a certain field, given that we have information regarding the other fields. Most specifically, in this study, we look at the Electronic Health Records (EHRs) that are compiled by hospitals. These EHRs are convenient means of accessing data of individual patients, but there processing as a whole still remains a task. However, EHRs that are composed of coherent, well-tabulated structures lend themselves quite well to the application to machine language, via the usage