Understanding Video Transformers

解释视频Transformer决策过程的概念发现

普通产品视频视频可解释性
这篇论文研究了视频Transformer表示的概念解释问题。具体而言,我们试图解释基于高级时空概念的视频Transformer的决策过程,这些概念是自动发现的。以往关于基于概念的可解释性的研究仅集中在图像级任务上。相比之下,视频模型处理了额外的时间维度,增加了复杂性,并在识别随时间变化的动态概念方面提出了挑战。在这项工作中,我们通过引入第一个视频Transformer概念发现(VTCD)算法系统地解决了这些挑战。为此,我们提出了一种有效的无监督视频Transformer表示单元(概念)识别方法,并对它们在模型输出中的重要性进行排名。所得的概念具有很高的可解释性,揭示了非结构化视频模型中的时空推理机制和以对象为中心的表示。通过在多样的监督和自监督表示上联合进行这种分析,我们发现其中一些机制在视频Transformer中是普遍的。最后,我们证明VTCD可以用于改善精细任务的模型性能。
打开网站

Understanding Video Transformers 最新流量情况

月总访问量

17788201

跳出率

44.87%

平均页面访问数

5.4

平均访问时长

00:05:32

Understanding Video Transformers 访问量趋势

Understanding Video Transformers 访问地理位置分布

Understanding Video Transformers 流量来源

Understanding Video Transformers 替代品