DIG-In
评估图像生成模型在不同地理区域的质量、多样性和一致性。
优质新品图像图像生成地理多样性
DIG-In是一个用于评估文本到图像生成模型在不同地理区域中质量、多样性和一致性差异的库。它使用GeoDE和DollarStreet作为参考数据集,通过计算生成图像的相关特征和精度、覆盖度指标,以及使用CLIPScore指标来衡量模型的表现。该库支持研究人员和开发者对图像生成模型进行地理多样性的审计,以确保其在全球范围内的公平性和包容性。
DIG-In 最新流量情况
月总访问量
494758773
跳出率
37.69%
平均页面访问数
5.7
平均访问时长
00:06:29