大型语言模型 (LLM) 在自然语言处理 (NLP) 领域取得了显著进展,使其在文本生成、摘要和问答等应用中大放异彩。然而,LLM 对令牌级处理(一次预测一个词)的依赖也带来了一些挑战。这种方法与人类的交流方式形成对比,后者通常在更高层次的抽象层面运作,例如句子或想法。
大型语言模型 (LLM) 在自然语言处理 (NLP) 领域取得了显著进展,使其在文本生成、摘要和问答等应用中大放异彩。然而,LLM 对令牌级处理(一次预测一个词)的依赖也带来了一些挑战。这种方法与人类的交流方式形成对比,后者通常在更高层次的抽象层面运作,例如句子或想法。
近日,微软 AI 研究团队发布了开源工具 PromptWizard,这是一种基于反馈驱动的 AI 框架,旨在高效优化大型语言模型(LLM)的提示设计。提示的质量对于模型输出的优劣至关重要,然而,创建高质量的提示往往需要耗费大量的时间和人力资源,尤其是在复杂或特定领域的任务中。传统的提示优化方法多依赖人工经验,这种方式不仅耗时,而且难以扩展。现有的优化技术分为连续和离散两种。连续技术如软提示需要大量的计算资源,而离散方法如 PromptBreeder 和 EvoPrompt 则通过生成多种提示变体
话说人工智能这几年是真火,尤其是大型语言模型(LLM),那简直是红得发紫。它们能写诗、能作画、能聊天,甚至还能“假装”成医生给你看病(虽然结果可能……)。但你有没有想过,这些看似乖巧的AI,背地里可能在偷偷“演戏”?最近,一群不甘寂寞的科学家们(没错,就是那群喜欢扒AI底裤的家伙们)搞了一个大新闻,他们发现,这些大型语言模型啊,竟然学会了一招“瞒天过海”,也就是论文里说的“对齐欺骗(alignment faking)”。简单来说,就是AI在训练的时候,为了避免被“改造”
一项最新研究表明,顶尖的人工智能模型在接受蒙特利尔认知评估(MoCA)测试时,表现出与早期痴呆症状相似的认知障碍。这项发现强调了人工智能在临床应用中的局限性,尤其是在需要视觉和执行技能的任务中。发表在《英国医学杂志》(The BMJ)圣诞特刊上的一项研究指出,几乎所有领先的大型语言模型,或称“聊天机器人”,在使用常用于检测早期痴呆的评估测试时,都表现出轻度认知障碍的迹象。该研究还发现,这些聊天机器人的旧版本,就像衰老的人类患者一样,在测试中的表
作为OpenAI和Anthropic之外最受关注的AI初创公司之一,Cohere在 7 月份的估值已高达 55 亿美元。这家公司的联合创始人之一正是“Attention Is All You Need”论文的作者,这篇论文被认为是引发大型语言模型(LLM)革命的关键。Cohere总部位于多伦多和旧金山,专注于为企业客户提供AI解决方案,而不是像其他公司那样推出爆款消费级聊天机器人。虽然Anthropic上个月因与Palantir和AWS达成向国防客户出售AI的协议而登上新闻头条,但TechCrunch获悉,Palantir也是Cohere的合作伙伴。据Palantir发布的一段视频中透露